Hold your ideas lightly

The history of teaching is littered with ideas that have come and gone. In their day each was the new bright hope, set to transform what we do as teachers and how our students learn. Each new idea had its supporters and detractors and each in turn was replaced by an alternative or simply disappeared from view. Those who have experienced this ebb and flow of ideas have learned to approach the shiny and the new with caution and yet we have all encountered ideas that are so compelling it is difficult to ignore. How might we approach new ideas and innovative practices in ways that ensure our students benefit?

Effective schools and teachers engage in a process of action research even if it is not thusly named. It is a process that can be as simple as identifying a need, imagining or identifying a solution, putting it into action and observing the results. Applied as a methodology for improving practice through cycles of research, implementation, evaluation and reflection it can provide valid research data. A key benefit of action research is that it is closely linked to practice and involves practitioners as researchers ensuring a close connection between the research and its implementation. In action research it is very likely that those implementing the new strategy will have a solid understanding of its research basis, the problem it aims to address and the result it should achieve.

Action research fits nicely into a design thinking approach. There is much in common between the two methods and one could see design thinking as a structure for action research. At the core of both approaches is the identification of a problem the development of a planned response, the implementation of the plan and deliberate reflection. Both should include opportunities to adjust the plan at various points and when looked at as a cycle it should be clear that the process need not be linear or have a set end point. Fluid movement between action, evaluation, planning and questioning phases allows both action research and design thinking to respond to discoveries mid cycle and for adjustments to be made.

For the evaluation of new ideas both models hold real advantages. Thinking outside the box is all very well but thinking is best when it has a degree of structure and some level of organisation and it is this that action research and design thinking provide. For collaborative efforts the structure provided and the labels attached to various phases of the process can help team members identify where they are in their endeavour and where they are headed next. A key ingredient is that in these models the process is highly iterative in nature and the ideal solution or even the clear articulation of the problem is not likely to occur with the first cycle. Understanding the iterative nature of action research or design thinking is critical for success and a contributing factor for long term group cohesion.

The sharing of ideas with colleagues is for many a process not undertaken lightly. The more of our individuality, passion and effort that is invested in the idea the harder this process of sharing can be. We want our ideas to be understood, appreciated and accepted. When we contribute ideas to an action research process it is natural to hope that they will be included in the groups planning. Feelings of disappointment when they are not are natural but this is not a productive response within an iterative process. We need to hold our ideas lightly.

Those of us empowered by a growth mindset are perhaps more open to sharing our ideas. If our idea is not what the group is looking for we are able to move quickly on to the next idea without a negative reaction. Our ability to let go of our ideas decreases as our commitment to them increases and this commitment is directly related to the time, effort and emotion we have invested. To this end Ewan Macintosh urges us to share our ideas early, before we are too committed to them to listen to constructive feedback. If we share early, at a point where the idea is developed sufficiently to be understood by others who can provide us with feedback we may be more open to incorporating these new perspectives into our thinking.

Sharing early requires more than individuals who are open to the idea, it must be backed by a culture that accepts ideas should be shared before they are fully baked. Such a culture accepts that ideas might have rough edges, missing details, errors and imperfections. Such a culture is a natural fit with action research as it is one that encourages ideas to be tested and worked on without fear of failure. If the culture of a place is not accepting of failure in its action research efforts, it is not possible to try truly innovative ideas and efforts at safe innovation are unlikely to produce significant changes worthy of the effort. Fear of failure amongst individuals on action research will produce other negative consequences such as group think where divergent ideas are kept private and staff fall into patterns of trying to guess what their supervisor wants them to contribute.

One effective strategy for action research within larger organisations can be to trial multiple competing solutions at once with teams testing different approaches to a common problem. This connects nicely to an iterative process and can accelerate the research process as multiple options are tested and understood in parallel. It can also unlock our competitive natures when the ideas are compared and evaluated. A clear understanding, that it is the idea being assessed and not the individuals who researched its application, is essential. In cases such as this teams must hold their ideas lightly and accept that ultimately not all ideas will transfer into policy or future practice.

A willingness to hold our ideas lightly may also help avoid the scenario where the ultimate solution is a hybrid of multiple ideas formed not for its best fit to the problem but as a compromise between divergent groups. A willingness to let go of parts or all of our idea and accept that it may not offer the best solution is not easy but a necessary step towards maximising the benefits of action research. Perhaps hardest of all is letting go of our ideas when we are the ones who must make the decision. For leaders this is part of the job; a willingness to accept ideas from all channels will allow us to respond in the best possible way and to select the right path even when it is not the path we had envisioned. The capacity of an organisation’s leadership to share ideas early, listen to feedback and respond accordingly will have a powerful effect on the organisation’s culture and ability to innovate.

In the spirit of holding my ideas lightly I invite comments or feedback on how this article may be improved or why it should be deleted. I look forward to the discussion.

By Nigel Coutts

 

An Introduction to Design Thinking (Part Two)

In the constructivist-learning model, engagement and experience combine with immersive environments and self-organisation of knowledge to establish a context in which learning occurs naturally. Constructivism has since the time of Dewey become closely affiliated with Project Based Learning and yet despite years of efforts to refine the process the result does not always match the promise (Scheer, Noweski and Meinel. 2012). Scheer et al. argue that ‘Design Thinking’ is capable of providing the structure required for successful constructivist learning and the development of skills required for 21st century citizenship. ‘We want to fill that gap by proposing ‘Design Thinking’ as a meta-disciplinary methodology which offers teachers the needed support through a formalised process. Teachers, as facilitators of learning need to be equipped with up-to-date skills and tools to actually practice on the needed key competence learning.’ So where should a school start and what does it mean to implement ‘Design Thinking’?

For schools in Australia, ‘Design Thinking’ needs to be on your radar thanks to the ongoing implementation of the National Curriculum. The ‘Design and Technologies’ curriculum incorporates ‘Design Thinking’ principles from Foundation to Year Ten with statements such as 'As design skills and design thinking develop, students should have greater input into the development of design briefs for specific identified needs or opportunities.’ and 'In Design and Technologies, in the early years, students are actively involved in projects.’ The curriculum requires students consider the ethics and sustainability of their solutions in their marketing; 'Students become more enterprising in developing and promoting designed solutions. Marketing increasingly draws on social and sustainability considerations, recognising wider societal acknowledgement of ethics and futures thinking.’ and will require collaboration on a scale that will be new to many schools 'They coordinate teams and collaborate with others locally and globally.’ This syllabus is available for use by States and Territories and its influence can be seen in document such as the NSW Science K-10 syllabus that incorporates Science and Technology.

An alternate approach for any school seeking support in implementing a ‘Design Thinking’ approach would be to match the description and requirements of critical and creative thinking provided with the Australian Curriculum against the benefits of design thinking. One statement seems most appropriate for this purpose ‘Critical and creative thinking are fostered through opportunities to use dispositions such as broad and adventurous thinking, reflecting on possibilities, and metacognition (Perkins 1995), and can result from intellectual flexibility, open-mindedness, adaptability and a readiness to experiment with and clarify new questions and phenomena (Gardner 2009).’(Australian Curriculum) It would not be unreasonable to restate this with ‘Design Thinking’ in place of 'critical and creative’ as it is these opportunities that occur within such a framework.

For a school wishing to implement ‘Design Thinking’ the first step needs to be understanding that it is a process which should become entrenched into the broad approach of the school. If the desire is to add pieces of a ‘Design Thinking’ approach then it is unlikely that the full benefits will be achieved. Situated within a culture that allows learning from failure, encourages a growth mindset, values creative and critical thinking and places a high value on learners finding questions that matter ‘Design Thinking’ can be the process that consolidates the schools learning platform.

One starting point for a school wishing to build a culture that supports ‘Design Thinking’ should be the writing of Carol Dweck and the conceptual framework that is embodied in ‘Growth Mindsets’. Beginning with a ‘Growth Mindset’ will allow learners to see mistakes and failure as an opportunity to learn. New research by Melles, Anderson, Barrett & Thompson-Whiteside (2015) found that attitudes to risk-taking played an important role in the success of ‘Design Thinking’ endeavours and that Australians were particularly risk averse. ‘In order to support design thinking in Australian schools and higher education, we need to consider what constitutes a nurturing and supportive environment for creative and innovative thinking. (Melles et al 2015 p200)

When extended to a ‘Design Thinking’ approach a growth mindset will allow each iteration in the design process to be seen as one step closer to a workable solution. Learners with a growth mindset will fear neither feedback nor sharing their ideas in a process of collaboration. The process of giving and receiving feedback is a key piece of ‘Design Thinking’ and one that is well supported by a growth mindset. To learn more about ‘Growth Mindsets’ visit Carol Dwecks website - or read her book - 'Mindset: The New Psychology of Success’. Resources for promoting a Growth Mindset are abundant on the web and a quick search will reveal a wealth of ideas. On Twitter try #growthmindset It is easy to take the approach of placing posters on walls and doing little else but this will only introduce the idea. To genuinely develop a ‘Growth Mindset’ takes time and a concerted effort in shifting the way individuals and groups think and talk about learning. Subtle changes to the way feedback is provided, the nature of conversations around success and the attribution of achievement to characteristics within the individuals control all play an essential role in shifting mindsets.

Promoting a Growth Mindset

Good to Great Advice for Growth Mindsets

Having established a ‘Growth Mindset’ the next step for a school might be to develop the question asking capacity of its learners. ‘In design thinking significant time and energy are dedicated to the problem finding phase’  ‘where as in problem-based learning, students follow accepted theories and principles to solve a clearly defined problem given by the teacher.’ (Melles et al. 2015 p193 & 190) Just as with a ‘Growth Mindset’ establishing a culture that values asking and seeking questions that are worth answering will establish the environment necessary for ‘Design Thinking’. It is quite likely that this will be the first tension point as ‘Design Thinking’ is implemented as there needs to be ample opportunities for learners to seek questions and this is counter to the ‘command and control’ model of teaching and leadership that continues to permeate many institutions. The key is to see the importance of the skill set required to ask quality questions. Fortunately just as with ‘Growth Mindsets’ there are numerous resources to draw on. One of the best is the writing of Warren Berger in his book ‘A More Beautiful Question’. The reader of ‘A More Beautiful Question’ will discover how innovation leaders utilise their ability to ask questions as the starting point of a process for discovery and change. The way a question is posed, the value it is given and the openness in which alternative questions are pursued can have a significant effect on an organisation and a learner’s ability to innovate.

One-way of identifying the type of question most appropriate for ‘Design Thinking’ is embodied by the term ‘Wicked problem’. Richard Buchanan who borrowed the idea from Horst Rittel expanded on the idea of ‘wicked problems’. A ‘wicked problem’ is one with ill-defined terms, confusing information and many conflicting demands that conspire against simple solutions. If there is a single reason for the broad adoption of ‘Design Thinking’ it is the ‘wicked problem’ as it is this class of problem that most confounds traditional problem solving pathways. ‘Design Thinking’ with its focus on solutions suits the demands of ‘wicked problems’ by allowing the learner to concentrate on finding satisfactory solutions rather than needing to find optimum solutions. (Cassim. 2013) In an increasingly complex world the ability to solve problems that do not have one single correct answer is an increasingly valuable skill.

In previous posts I have explored the questions we ask and the utility of allowing students to pursue questions of their own.

 The Questions that Matter most

What Questions shall we ask?

 Questions that encourage deeper thinking

Having established a culture that will allow ‘Design Thinking’ to thrive the next phase is selecting the process or framework that will facilitate the desired results. A ‘Design Thinking’ frame should allow individuals and groups to function in a productive manner that promotes collaboration and engages users in a process where ideation, sharing, iteration, reflection and evaluation combine. From simple models to highly evolved multi-phase processes there is likely to be a framework that works for your particular goals. For the ‘Design Thinker’ the framework provides a scaffold for their thinking and allows them to engage with collaborators in a more productive manner. For the teacher this structure can remove some of the fear that comes from throwing the class open to the students. While chaos at times can produce results it can also consume large quantities of time. A well selected or developed design process should allow time for creative chaos but include time for evaluation of the results and provide steps along the way for the consideration of alternatives.

When getting started you will probably want to use a ‘Design Thinking’ process that has been tried and tested. There are numerous options and most are supported with easy to follow graphics. The importance of a cyclical, iterative process should be clear in any model selected with opportunities for the learner to enter and exit the cycle at the appropriate point. This cyclical process sets ‘Design Thinking’ apart from linear design patterns where the designer moves from one phase to the next and onto a clear conclusion. While a linear design process may be appropriate for traditional graphic or product design where one solution is prepared for consideration by a client, it does not serve the multitude of purposes that ‘Design Thinking’ may be adapted to serve. The one danger with this cyclical process is that some learners may never feel they are ready to exit the cycle of evaluation and refinement. An understanding that needs to be built into the ‘Design Thinking’ culture is that ideas need to be shared and in the end a result should be achieved; endless refinement without sharing is counter productive.

Regardless of the model you choose you will most likely have four to five main phases in your Design Cycle. Fatima Cassim distilled one model of the ‘Design Cycle’ from academic writings on the topic. Cassim identifies the key phases as: Formulating, Representing, Moving, Evaluating Reflecting

Adapted from Fatima Cassim (2013)

Adapted from Fatima Cassim (2013)

For added detail at each phase of the cycle you may find the Design Cycle developed for the International Baccalaureate useful. It has four main phases with up to three distinct steps within each.

Image courtesy of IB World School - http://www.ibo.org/

Image courtesy of IB World School - http://www.ibo.org/

 Other options for a Design Cycle include the excellent model developed by Dr Charles Burnette available online at idesignthinking.com or the detailed process developed by the Nueva School. An extensive set of resources and professional development is offered through NoTosh.com including tools for planning and strategies such as ‘Hexagonal Thinking’ that will encourage learners to make connections between ideas. For schools wishing to apply ‘Design Thinking’ as a strategy for solving problems and not just as a teaching tool the experts at IDEO have produced a toolkit for educators called ‘‘Design Thinking’ for Educators’. This resource provides a set of tools that can be adapted to solve many of the problems schools are likely to face from reimagining spaces to developing new learning programmes. Stanford’s dSchool is a highly respected leader in the field of ‘Design Thinking’ and share many valuable resources through the web. For any school looking to implement ‘Design Thinking’ their Bootcamp Bootleg is a valuable set of resources that can be tailored to individual needs. While some of these resources are aimed at users beyond the classroom, the ideas can be modified to suit a classroom setting with a little creative thinking. To this end dSchool has a site dedicated to the K-12 environment and provides a wealth of tailored resources based upon the programmes developed for University students.

Hexagonal Thinking courtesy of NoTosh - http://notosh.com/

Hexagonal Thinking courtesy of NoTosh - http://notosh.com/

As you delve deeper into ‘Design Thinking’ you may wish to build a model of the ‘Design Cycle’ that suits your needs as a school and body of learners. Taking this step can be a learning experience and the result is a device that is understood more deeply than if you borrow a process from elsewhere. This is the thinking behind the ‘Creative Process Planner’. It was developed with ideas borrowed from many other ‘Design Cycles’ and is aimed at serving the needs of students as they approach their ‘Genius Hour’ projects. It includes a range of sub-steps and gives just enough advice to help students move ahead with their projects. It was developed initially in ‘Inspiration’ the well-known mind mapping software and gradually adapted to be used on the web. It is presented here with an open licence for schools to adapt to their needs.

Once you have the foundations of a ‘Design Thinking’ culture in place, you may like to explore providing a space for it to occur within. ‘Even more so, they need space to try out different mental models and methods to connect abstract knowledge with concrete applications and thereby, being able to convert and apply abstract and general principles (acquired through instruction) in meaningful and responsible acting in life (acquired through construction). (Scheer, Noweski and Meinel 2012 p10) ‘Design Thinking’ is a philosophy that fits nicely alongside the ideals of the Maker Movement and providing a space for ‘Design Thinking’ that is flexible and encourages collaboration can do much to legitimise the endeavour.

 by Nigel Coutts

Read Introduction to Design thinking (Part One)

Buchanan, R. (1992). Wicked Problems in ‘Design Thinking’. Design Issues, 8(2), 5-21

Cassim, F. (2013). Hands On, Hearts On, Minds On: ‘Design Thinking’ within an Education Context. International Journal Of Art & Design Education, 32(2), 190-202.

Gardner, H. 2009, 5 Minds for the Future, McGraw-Hill, North Ryde, Sydney.

Melles, G. Anderson, N. Barrett, T.  & Thompson-Whiteside, S. 2014 Problem finding through design thinking in education Chapter in Innovations in Higher EducationTeaching and Learning - http://www.emeraldinsight.com/doi/full/10.1108/S2055-364120150000003027

Perkins, D. 1995, The Intelligent Eye: learning to think by looking at art, Getty Centre for the Arts, California.

Scheer, Andrea, Noweski, Christine, & Meinel, Christoph. (2012). Transforming Constructivist Learning into Action: ‘Design Thinking’ in Education. Design and Technology Education, 17(3), 8-19.

 

An Introduction to Design Thinking (Part 1)

‘Design Thinking’ might just be the next ‘new’ old thing in education. In her recent address to the National Press Club, Catherine Livingstone of The Business Council of Australia included ‘Design Thinking’ amongst the critical STEM skills required for Australia’s future. But what do we mean by ‘Design Thinking’ and why should educators be interested?

Stanford University has been a pioneer of ‘Design Thinking’ since founding its dSchool in 2005. Founder David Kelley explains that ‘the central tenet of Design Thinking, isn't one of aesthetic or utility, but of empathy and human observation’. It is a process for finding new ways of solving problems and for identifying problems worth solving. It is much more than a process of design and it provides a structure in which critical thinking, reflection and evaluation is the key. Seen in this way it is what 21st century teaching and learning is all about.

"We moved from thinking of ourselves as designers to thinking of ourselves as design thinkers. We have a methodology that enables us to come up with a solution that nobody has before." — David Kelley

In a traditional problem solving model the solution is derived to solve the problem that has been presented. ‘Design Thinking’ begins a step before this with the identification of the problem a subtle but important difference. The problem identification process is critical as it at this point that we begin to evaluate why problems need a solution. According to Kelley the measure is empathy or ‘needfinding’ a process in which ‘ it was just important to worry about figuring out the kind of human needs that were worth working on and then doing the problem-solving’. ‘Design Thinking’ is not something that happens separate to humanity it is a core response to the needs of people and it begins with asking questions about making the world a better place.

The methodology of ‘Design Thinking’ is the key to its value. It provides a structure and language for collaborative problem solving that allows teams to be more powerful than they would without it. Ewen McIntosh of ‘NoTosh' describes it as the box that gives you a place to work within. 'You want to think creatively, you NEED the box to think inside of. You need a common process to go into new places.' Rather than throwing out the box, ‘Design Thinking’ turns the box into a worthwhile process that facilitates problem solving and ideation. In this model the box is not a constraint but a structure that enhances creativity.

‘Design Thinking’ engages learners in a highly iterative process grounded in evaluation and critical reflection, both highly valued processes. Research by Looijenga, Klapwijk and de Vries titled 'The effect of iteration on the design performance of primary school children’ explored the benefits of a highly iterative design process for young students. They found that 'Effective knowledge expansion comes by thinking about already acquired knowledge and also by searching for definitions and explanations of not yet understood knowledge. Both activities are practiced during design activities.’ This study used simple design tasks with young learners, not the more involved and student driven tasks typical of a ‘Design Thinking’ process and yet the results showed that the iterative process of design tasks required high order thinking skills that could be transferred to other learning contexts. 'Design concepts emerge and become complete through iteration of analysis, synthesis and evaluation’. For schools using Bloom’s taxonomy the evidence here is clear that ‘Design Thinking’ will not only target the high level thinking skills which are so desirable but will require them to be used over and over again by the students as they evolve their ideas.

For advocates of a ‘Genius Hour’ approach ‘Design Thinking’ is unlikely to be a knew idea. The research by Looijenga et al. adds validity to such an approach ‘Our case study shows that iteration, freedom of choice, collaboration and presentation improve the effectiveness of design and technology activities.’ The beauty of ‘Design Thinking’ is that is a highly collaborative process that leads to the presentation of ideas that are evolved through iteration. That the process begins with the identification of the problems and needs that will become central to the project adds further values as learners are allowed to develop ideas with both personal and broad meaning.

Central to the iterative process is ongoing evaluation of ideas. Allowing students to experience an environment where learning occurs from self-identification of what works and what does not has great value. In ‘Design Thinking’ failure is part of the process that leads to learning. Each time an idea is found to be lacking the learner moves one step closer to a plan that has a chance of working. In the world of start-ups and tech companies this mentality is given voice in catch cries such as ‘fail fast’ or ‘move fast and break things’. Students learn to evaluate their ideas and learn from each iteration. If our goal is to develop a ‘Growth Mindset’ where failure is viewed as a positive learning experience ‘Design Thinking’ provides an ideal process and opportunities to develop an attitude that can be readily transferred beyond the design project.

A “‘Design Thinking’’ approach will also ensure students are engaging in a process of critical reflection and metacognition. 'Effective reflection for learning through experience requires a capacity for understanding one’s thinking and learning processes, critical self-awareness of values, beliefs and assumptions, and an openness to alternative, challenging perspectives.’ according to Debra Coulson and Marina Harvey of Macquarie University. Their research focused on the role of reflection at three critical points in the learning cycle and which occur repeatedly within a ‘Design Thinking’ process. ‘Reflection for Action’ can occur for students as they consider the nature of ‘Design Thinking’ and use scaffolds for their collaboration which will support reflective practice. ‘Reflection in Action’ is part of the culture of ‘Design Thinking’ in which learners are constantly engaging in a process of questioning, evaluating, testing and refining their ideas based on their observations and analysis. Including a formal reflective process into this mix can add structure and refine the process while recording the thinking that is taking place for later analysis and review. ‘Reflection on Action’ occurs at end points in the ‘Design Process’ but as in many respects the end point is the start of a new cycle the reflective process has greater meaning than it may otherwise. In a “‘Design Thinking’’ model this ‘reflection on action’ is what spurs the learner onto more action and continued learning. 'Reflection and learning may continue long after the experience and the academic requirements are complete, particularly if scaffolding has been effective in supporting the development of reflective ability and agency.'

Observe a group of students engaged in ‘Design Thinking’ and you will see similarities to the way students play. Unsurprisingly Looijenga et al. noted this in their study. 'Playing includes experimenting with the same thing, with small variations, over and over again. Every repetition of the experiment gives improvement in performance.’ This sort of constructive play according to John Dewey, amongst other skills and dispositions encourages students to take responsibility for their own learning. What you are also likely to see is learners engaging in a process of self-explaining in which they describe their thinking to themselves or share their ideas with collaborator or teacher. ‘Eliciting self-explanations clearly enhances learning and understanding’ states Chi, De Leeuw, Chiu and LaVancher in their study on the effect of self-explaining. Chi et al. found that self-explaining is a constructive activity and it occurs frequently within the ‘Design Thinking’ process. Further they found it encourages integration of new learning with old and as it is a continuous process where partial explanations are evaluated and added to ‘self-explaining' can manage conflicts and misunderstandings between new and old knowledge. ‘Design Thinking’ encourages this sort of iterative self-explaining and constructive play.

In Part Two of ‘An Introduction to Design Thinking’ explore how ‘Design Thinking’ can be implemented by schools and discover a range of resources from experts in the field that can maximise its benefits for learners while making the process easy for teachers to embed.

 

Coulson, D., & Harvey, M. (2013). Scaffolding student reflection for experience-based learning: a framework. Teaching In Higher Education, 18(4), 401-413. doi:10.1080/13562517.2012.752726

Chi, M., De Leeuw, N., Chiu, M., & Lavancher, C. (1994). Eliciting Self-Explanations Improves Understanding. Cognitive Science, 18(3), 439-477. doi:10.1207/s15516709cog1803_3

Dewey, J. (1899/1976). Play and imagination in relation to early education. In The middle works 1 (pp. 339–343). Carbondale & Edwardsville: Southern Illinois University Press.

Looijenga, A., Klapwijk, R., & de Vries, M. (2014). The effect of iteration on the design performance of primary school children. International Journal of Technology & Design Education, 25(1), 1-23. doi:10.1007/s10798-014-9271-2